

# **Graphics Processor Units (GPUs) Explained**

## **Mark Govett**





### CPU: Nahalem (2009)



- 4 Intel I7 cores
- 4 cores execute instructions simultaneously
- focus on single-thread performance
- speculative execution
- 32K L1, 256K L2 cache
- 8 MB Shared L3 cache

### The Basics

- GPUs are a CPU co-processor
- Developed for the video gaming industry
- Millions of GPUs are sold every year
- GPUs come standard with many desktop and laptop systems

| Illustration of two<br>Fermi GPUs<br>attached to a dual-<br>socket Nahalem CPU | CPU#1 | GPU#1 |
|--------------------------------------------------------------------------------|-------|-------|
|--------------------------------------------------------------------------------|-------|-------|



### CPU - GPU Comparison at a Glance

| CHIP<br>TYPE                                  | CPU<br>Nahalem | GPU<br>NVIDIA Tesla     | GPU<br>NVIDIA Fermi       |
|-----------------------------------------------|----------------|-------------------------|---------------------------|
| Cores                                         | 4              | 240                     | 512                       |
| Parallelism                                   | Medium Grain   | Fine Grain              | Fine Grain                |
| Performance Single Precision Double Precision | 47 GFlops      | 933 GFlops<br>60 GFlops | 1040 GFlops<br>500 GFlops |
| Power Consumption                             | 130W           | 150W                    | 220W                      |
| Transistors                                   | 730 million    | 1.4 bilion              | 3.0 billion               |

# Getting to Operational PetaFlop Computing

### **Operational Computing at NCEP**

### Where We Are Today

~180 TeraFlops (2 systems) 5000 IBM Power 6 68th, 69th fastest on Top500 (Nov2009)

> Power 0.5 MegaWatts

Reliability Use two 90 TeraFlop Systems

99.9 reliability requirement



### Research Computing: DOE Jaguar

State of the Art in CPU Computing Innovative building design, cooling, power efficiency

> 2.3 PetaFlops 250,000 AMD cores 284 cabinets of computing

Power 7-10 MegaWatts (sufficient for 8-10,000 homes)

Reliability MTBF: estimated in hours

Facilities (\$73M), System (~ \$100M) Annual Power (~ \$4M)



DOE Oak Ridge Computing Facility

### **GPU Cluster Computing**

Alternative Fermi System

1.0 PetaFlops 1000 NVIDIA Fermi GPUs 500 Intel CPU Nodes 10 cabinets of computing



Power 0.5 MegaWatts

Reliability Power Plant - 225 MegaWatts Boulder, CO MTBF: Estimated in weeks

> Cost System (~ \$5M) Annual Power (~ \$250K)



NOAA Boulder Computing Facility

### Why are GPUs So Fast?

- Design maximizes computational efficiency
- Chip space is dominated by processing units
- High number of compute cores
- Cores are simple, lightweight, low-power

### GPU: NVIDIA Tesla (2010)



### Computational Capability

- 512 cores executing simultaneously
- 16 Streaming Processors (SP)
  - 32 cores (a warp) execute the same instruction simultaneously
  - dual issue warp scheduling
  - rapid context switching

# **Alternative Computing Technologies**

ATI Radeon GPU (2010) 5.0 TeraFlops Performance Graphics card only No HPC language support

Intel SandyBridge CPU (2011) 8 cores + "GPU" extensions